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Calculation of the Class Numbers 
of Imaginary Cyclic Quartic Fields 

By Kenneth Hardy,* R. H. Hudson,** D. Richman, 
Kenneth S. Williams,*** and N. M. Holtz 

Abstract. Any imaginary cyclic quartic field can be expressed uniquely in the form K= 

Q(VA (D + By) ), where A is squarefree, odd and negative, D = B2 + C2 is squarefree, 
B > 0, C > 0, and (A, D) = 1. Explicit formulae for the discriminant and conductor of K are 
given in terms of A, B, C, D. The calculation of tables of the class numbers h (K) of such 
fields K is described. 

Let Q denote the field of rational numbers and let K be a cyclic extension of Q of 
degree 4. The unique quadratic subfield of K is denoted by k. The class number of 
K (resp. k) is denoted by h(K) (resp. h(k)). The conductor of K is denoted by 
f = f (K). In the case of real cyclic quartic fields K, Gras [3] has given a table of the 
values of h(K) for all such fields with f < 4000. Recently, the authors have carried 
out the calculation of the class numbers of imaginary cyclic quartic fields [4]. In this 
note we give a brief description of the computation of the tables given in [4]. 

The following explicit representation of a cyclic quartic field is proved in [4, 
Theorem 1]. 

THEOREM 1. If K is a real or imaginary cyclic quartic extension of Q, then there are 
integers A, B, C, D such that 

(1) K = Q( A(D + BD) )=Q(A(D- BD)), 
where 

(A is squarefree and odd, 

(2) (D = B2 + C2 is squarefree, B > 0, C > 0, 
A and D are relatively prime. 

Moreover, any field satisfying (1) and (2) is a cyclic quartic extension of Q. The 

representation of K in (1) is unique in the sense that if K = Q( A1(JD1 + B XD )) 
is another representation of K, where A,, B1, C1, D1 are integers satisfying the 
conditions of (2), then D = D1, A = Al, B = B1, C = C1. 
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We remark that the field K is totally real if A > 0, and is totally imaginary if 
A <0. 

Next we let G denote the multiplicative group of residues coprime with f = f (K), 
so that G Gal(Q(e2'i/f)/Q). The subgroup of G which is isomorphic to 
Gal(Q(e2"</f)/K) is denoted by H. H is a subgroup of index 4 in G and the factor 
group G/H is cyclic of order 4. Let a be an element of G such that G/H is 
generated by aH. We define a character X on G by 

(3) X(a) = i, x (h) = 1 for all h E- H. 

The character X is a quartic, primitive, odd character of conductor f. 
When K is taken to be an imaginary cyclic quartic field, the class number formula 

for Abelian fields yields the following formula for h(K) [4, Theorem 31. 

THEOREM 2. If K is an imaginary cyclic quartic field of conductor f with quadratic 
subfield k, then 

2 

0< n <f/2 

where the value of the quantity p is given by 

(1/2, iff = 5, 
11/8, iff> 5, f even, 

(5) p 1/2, iff > 5, f odd, x(2) = 1, 

11/18, iff>5,fodd,x(2)= -1, 

1/10, iff > 5, f odd, X (2) = ? i, 

and X is defined in (3). 

In order to use Theorem 2 to calculate h(K), we need to be able to compute f. A 
formula for f in terms of D, A, B, C is given in Theorem 3 (see [4, Theorem 5]). 

THEOREM 3. The conductor f(K) of the (real or imaginary) cyclic quartic field 
K = Q(VA ( D + B/D ) ), where A is squarefree and odd, D = B2 + C2 is squarefree, 
B > 0, C > 0, and (A, D) = 1, is given by 

(6) f (K) = 2' A ID, 

where 

'3, if D 2 (mod 8), 
I or 

(7) 1= D 1 (mod4), B 1 (mod2), 
12, if D-1 (mod4), B 0 (mod2), A + B 3 (mod4), 

0, if D -I (mod4), B 0 (mod2), A + B 1 (mod4). 

Also, in order to apply (4), it is necessary to be able to compute x(g) for g E G. 
Since g = Ach for some i = 0, 1, 2,3 and some h e H, it suffices to have a criterion 
for recognizing when an element of G is actually in H. As each element of G is 
congruent to a prime modulo f, we can test whether g belongs to H or not by means 
of the following theorem [4, Theorem 6]. 
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THEOREM 4. Let K be a (real or imaginary) cyclic quartic field Q(VA ( D + BF/i) ), 
where A is squarefree and odd, D = B2 + C2 is squarefree, B > 0, C > 0, and 
(A, D) = 1. Let H be the subgroup of the multiplicative group of residues coprime with 
f = f(K) which is isomorphic to Gal(Q(e2`'/f)/K). Let p be an odd prime not 
dividing A, B, C or D. Then p E H if and only if 

(8) =D + 1 +AD ) +1 

where D E2 (mod p) and ( -) denotes Legendre 's symbol of quadratic residuacity 
(mod p). 

From now on, we restrict K to be an imaginary cyclic quartic field, so that in the 
representation (1) we have A < 0. Theorems 1, 2, 3, 4 were used to calculate the 
class numbers h(K) of the 3521 distinct fields K with 

(9) 1 < D < 10, 1 < - A < 20, 
as well as those of the 4274 fields with conductor f satisfying 
(10) f < 10,000. 
The calculations were carried out using computer programs written in PASCAL and 
implemented on both an IBM micro computer and an APOLLO mini computer. The 
resulting values are listed in the tables in [4]. 

We just list at the end of this note the values of h (K) for those fields K with 
f < 200. 

We now describe briefly how the computation of h (K) was carried out. First, 
Theorem 3 was used to generate two data files containing the values of (D, A, B, C) 
and f: one for the fields K specified by (9), the other for those fields given by (10). 
For each of these two data files, a file of the class numbers h(K) was produced as 
follows. 

For each (D, A, B, C) an element a of G was determined such that G/H = (aH). 
This was done by finding a small integer k coprime with f for which the least prime 
p k2 (mod f ) satisfied 

(11) (kP ) -1, or (p = 1 (sayD -E2(modp)) and 

(A(D + BE)) -1. 
p 

By Theorem 4 we see that p O H. As IG/HI = 4, we have (kH)4 = H. Clearly, 
(kH)2 + H, for otherwise we would have k2 e H, contradicting p e H. Hence, 
ordG/H(kH) = 4 and so we may take a = k. 

Next, for each (D, A, B, C), a set of elements from which the subgroup H is easily 
constructed, was found. This was done by determining the generators of the cyclic 
groups of prime power order in the decomposition of G as described, for example, in 
[1]. These generators were stored together with their orders. The generators of the 
odd part of G are also the generators of the odd part of H. For each generator gi 
(i = 1,2,.. .,s) of the 2-part of G, the unique integer j(gi) (= 0,1,2,3) was 
determined such that gi E a1(gi)H, using the value of a calculated above and the 
criterion of Theorem 4. The values of ](g.) were stored. The 2-part of H is given by 
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the elements 

(12) XI ... get (O x, < ord(gj) - I,1 < i < S) 
for which 

(13) xlj(g,) + * xsj(g,) =- 0 (mod 4). 

Then, for each (D, A, B, C), the value of o < n<f/2 X(n)12 was calculated by means 
of the equation 

2 

(14) Z x(n) = (C0 - C2)2 +(C1 - C3)2 
0< n<f/2 

where 

(15) Cr= E 1 (r=0,1,2,3). 
0 < <f/2 

nV arH 

The identities 

(16) co+c2= (f)/4, C?+C3= (f)/4 

served as checks on the calculation. 
As the relative class number h(K)/h(k) is an integer, the following congruence 

holds (see Theorem 2): 

(17) (C0- C2)2 ?(C1 - C3)2 0 0 (modt), 

where 

(8, if f> 5, feven, 

(18) tl 18, if f>5,foddx(2)= -1, 
10, if f> 5,f odd, X(2)= ?, 

, 2, otherwise. 

This congruence was used as another check on the calculation, in order to reduce the 
chances of a computer error. 

Finally, Theorem 2 was used to calculate h(K) from the values of (C0 - C2)2 + 

(C1 - C3)2, the values of h(k) given in [6], and the values of p defined by (5). 
When D-q (prime) = a2 + b2 5 (mod8), q < 1000, A = -1, B = b .O 

(mod&2), C = a =1 (mod 2), our values agree with those in [5]. In addition, when 
D = 5, our values agree with those which can be deduced from the table in [2]. 

The following table is a very short extract taken from the second table in [4]. 
Table of class numbers of imaginary cyclic quartic fields 

Q( A(D + B )), 

where D, A, B, C are integers such that 

A is squarefree, odd, and negative, 

D = B2 + C2 issquarefree, B > 0, C> 0, 

(A, D) = 1 

in the range 

f < 200. 
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case f D -A B C h(k) h(K) 

1 5 5 1 2 1 1 1 
2 13 13 1 2 3 1 1 
3 16 2 1 1 1 1 1 
4 29 29 1 2 5 1 1 
5 37 37 1 6 1 1 1 
6 40 5 1 1 2 1 2 
7 48 2 3 1 1 1 2 
8 51 17 3 4 1 1 10 
9 53 53 1 2 7 1 1 

10 60 5 3 2 1 1 4 
11 61 61 1 6 5 1 1 
12 65 5 13 2 1 1 2 
13 65 13 5 2 3 1 2 
14 68 17 1 4 1 1 4 
15 80 2 5 1 1 1 2 
16 80 10 1 1 3 2 20 
17 80 10 1 3 1 2 4 
18 85 5 17 2 1 1 2 
19 85 85 1 2 9 2 20 
20 85 85 1 6 7 2 4 
21 101 101 1 10 1 1 5 
22 104 13 1 3 2 1 2 
23 105 5 21 2 1 1 4 
24 109 109 1 10 3 1 17 
25 112 2 7 1 1 1 4 
26 119 17 7 4 1 1 2 
27 120 5 3 1 2 1 4 
28 123 41 3 4 5 1 34 
29 136 17 1 1 4 1 4 
30 140 5 7 2 1 1 4 
31 145 5 29 2 1 1 4 
32 145 29 5 2 5 1 4 
33 149 149 1 10 7 1 9 
34 156 13 3 2 3 1 8 
35 157 157 1 6 11 1 5 
36 164 41 1 4 5 1 4 
37 165 5 33 2 1 1 8 
38 173 173 1 2 13 1 5 
39 176 2 11 1 1 1 10 
40 181 181 1 10 9 1 25 
41 185 5 37 2 1 1 10 
42 185 37 5 6 1 1 10 
43 187 17 11 4 1 1 34 
44 195 65 3 8 1 2 8 
45 195 65 3 4 7 2 104 
46 197 197 1 14 1 1 5 
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